Social Preference, Incomplete Information, and the Evolution of Ultimatum Game in the Small World Networks: An Agent-Based Approach

نویسنده

  • Xianyu Bo
چکیده

Certain social preference models have been proposed to explain fairness behavior in experimental games. Existing bodies of research on evolutionary games, however, explain the evolution of fairness merely through the self-interest agents. This paper attempts to analyze the ultimatum game's evolution on complex networks when a number of agents display social preference. Agents' social preference is modeled in three forms: fairness consideration or maintaining a minimum acceptable money level, inequality aversion, and social welfare preference. Different from other spatial ultimatum game models, the model in this study assumes that agents have incomplete information on other agents' strategies, so the agents need to learn and develop their own strategies in this unknown environment. Genetic Algorithm Learning Classifier System algorithm is employed to address the agents' learning issue. Simulation results reveal that raising the minimum acceptable level or including fairness consideration in a game does not always promote fairness level in ultimatum games in a complex network. If the minimum acceptable money level is high and not all agents possess a social preference, the fairness level attained may be considerably lower. However, the inequality aversion social preference has negligible effect on the results of evolutionary ultimatum games in a complex network. Social welfare preference promotes the fairness level in the ultimatum game. This paper demonstrates that agents' social preference is an important factor in the spatial ultimatum game, and different social preferences create different effects on fairness emergence in the spatial ultimatum game.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

Welfare Impacts of Imposing a Tariff on Rice in Iran vs an Export Tax in Thailand: A Game Theoretic Approach

In this study, the social welfare impacts of the interaction of Iranian rice import policies and Thai export policies are analyzed using a game theoretic approach in conjunction with econometric supply and demand models. The joint impacts of increasing the world price of rice, resulting from the export policies in Thailand along with changes in tariff rates in Iran, on social welfare are analyz...

متن کامل

A JOINT DUTY CYCLE SCHEDULING AND ENERGY AWARE ROUTING APPROACH BASED ON EVOLUTIONARY GAME FOR WIRELESS SENSOR NETWORKS

Network throughput and energy conservation are two conflicting important performance metrics for wireless sensor networks. Since these two objectives are in conflict with each other, it is difficult to achieve them simultaneously. In this paper, a joint duty cycle scheduling and energy aware routing approach is proposed based on evolutionary game theory which is called DREG. Making a trade-off ...

متن کامل

Modeling Cooperation between Nodes in Wireless Networks by APD Game

Cooperation is the foundation of many protocols in wireless networks. Without cooperation, the performance of a network significantly decreases. Hence, all nodes in traditional networks are required to cooperate with each other. In this paper, instead of traditional networks, a network of rational and autonomous nodes is considered, which means that each node itself can decide whe...

متن کامل

Interdependent Security Game Design over Constrained Linear Influence Networks

In today's highly interconnected networks, security of the entities are often interdependent. This means security decisions of the agents are not only influenced by their own costs and constraints, but also are affected by their neighbors’ decisions. Game theory provides a rich set of tools to analyze such influence networks. In the game model, players try to maximize their utilities through se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Artificial Societies and Social Simulation

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2010